
 

INTERNATIONAL WORKSHOP on TROPICAL CYCLONES (IWTC-9) 

December 3 – 7, 2018, Hawaii, USA 

 

Topic (Number ??):  TC Analysis and Remote Sensing 

Sub-Topic: New and Existing Methods to Estimate Tropical Cyclone Surface Wind Struc-
ture (Satellite Remote Sensing)  

Rapporteur/s:  Thomas Meissner + Lucrezia Ricciardulli, Remote Sensing Systems,  
Santa Rosa, CA, USA, meissner@remss.com, ricciardulli@remss.com.  

Working Group: Jeff Hawkins1, Matthew Kucas2, Mary Morris3, Alexis Mouche4, Nicolas Reul4, 
Kimberly Woods5 

1 Northrop Grumman 
2 Joint Typhoon Warning Center 
3 Jet Propulsion Laboratory, California Institute of Technology 
4 Institut Francais de Recherche pour l’Exploitation de la Mer 

5 Mississippi State University 
 
Abstract: The rapport describes and compares various existing and new methods to estimate 
tropical cyclone surface wind structure from spaceborne sensors.  We discuss scatterometers, L-
band radiometers, C-band synthetic aperture radar, reflectometers, microwave sounders. We de-
scribe the TC wind structure analysis at the JTWC and the DAV technique for determining wind 
radii. 

1. Reflectometry 

Global Navigation Satellite System-reflectometry (GNSS-R) is a remote sensing technique that 
uses navigation signals—specifically, those that reflect from a surface—opportunistically for sci-
ence applications (Zavorotny et al. 2014). The Cyclone Global Navigation Satellite System 
(CYGNSS) mission employs a constellation of eight microsatellites, each with a 4-channel GNSS-
R radar receiver capable of measuring Global Positioning System (GPS) L1 signals scattered 
from the surface (Ruf et al. 2016a,b; 2018). CYGNSS provides frequent observations of near-
surface ocean wind speed in all precipitating conditions and represents the first science-driven 
GNSS-R satellite mission.  

Contrasting the large swaths provided from scatterometers and radiometers, CYGNSS delivers 
wind speed observations via collections of tracks across the ocean surface (See Figure 1 below). 
(Ruf and Balasubramaniam 2018; Ruf et al. 2018) The sampling properties of the CYGNSS con-
stellation are a function of the orbit properties of the spacecraft and GPS satellites, and are there-
fore a function of latitude, and time and space window choices (Bussy-Virat et al. 2018). Morris 
and Ruf (2017a,b) developed methods that objectively estimate TC intensity, wind radii, radius of 
maximum wind speed, and integrated kinetic energy from simulated CYGNSS level-2 wind speed 
estimates. Morris and Ruf’s parametric model algorithm smartly interpolates across tracks of 
CYGNSS observations through a storm, leading to objective estimates of TC metrics. Using the 



best-track datasets as validation, these methods are applied and validated using the first set of 
CYGNSS TC observations (Morris 2018; Chu et al. 2002; Landsea and Franklin 2013). Figure 1 
shows a preliminary example of a CYGNSS storm overpass, with the resulting parametric model 
retrieval. In the example shown in Figure 1, Hurricane Florence is not completely sampled, but 
where there are observations, objective estimates of TC metrics are possible. Notably, CYGNSS 
wind speed estimates capture the storm structure asymmetry documented in the closest best-
track analysis. The methods developed in Morris and Ruf (2017b) are currently being applied to 
on-orbit data, with one retrieval example shown in Figure 1. 

 

Figure 1: A CYGNSS overpass of Hurricane Florence on 11 September 2018. Left: In color, CYGNSS 
young seas limited fetch (YSLF) wind speed. A dashed-cross line denotes the best track center location, 
with the red dots denoting the interpolated center position at the CYGNSS coverage time for this plot. 
Middle: CYGNSS YSLF wind speed, again in knots, but projected in storm centric coordinates, with the 
closest-in-time best track wind radii estimates visualized for comparison. Right: An example of a CYGNSS 
parametric model retrieval in the SE quadrant.  
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2. Summary and Conclusions 

L-band radiometers (SMOS, SMAP) do not suffer from signal saturation at high wind speeds and 
are minimally affected by rain.  Radiometers are an important spaceborne remote sensing tool for 
determining TC complimentary to the classical co-polarized scatterometers. Although reflectom-
etry is a less mature technique compared to others, CYGNSS provides valuable rapid revisit, high 
resolution, near-surface wind speed data, which are uninhibited by rain contamination.  

3. Recommendation 

We recommend considering using wind fields from L-band radiometers (SMOS and SMAP) for 
determining intensity and 34-, 50, and 64 kt radii in TC.  Proper scaling of the intensity of the 
satellite measurement to 1-minute sustained winds is necessary. 

We recommend further investigation of the use of CYGNSS data for determining TC size, strength 
and structure. While CYGNSS data are currently not available with a latency to support real-time, 
operational activities, the Naval Research Laboratory, serving as liaisons to the Joint Typhoon 
Warning Center, plan to jointly validate and assess potential impact of CYGNSS-derived size and 
structure estimates if they were available in an operational, real-time environment. 
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